
Potent and Selective Inhibition of
Neuronal Nitric Oxide Synthase by
Nω-Propyl-L-arginine

Henry Q. Zhang,‡ Walter Fast,‡
Michael A. Marletta,§,| Pavel Martasek,†,⊥ and
Richard B. Silverman*,‡

Departments of Chemistry and of Biochemistry, Molecular
Biology, and Cell Biology, Northwestern University,

Evanston, Illinois 60208-3113, Interdepartmental Program
in Medicinal Chemistry and Department of Biological

Chemistry, University of Michigan,
Ann Arbor, Michigan 48109, and Department of

Biochemistry, The University of Texas Health Science
Center, San Antonio, Texas 78284-7760

Received August 15, 1997

Nitric oxide, now known to function as a hormone and
neurotransmitter in a variety of physiological processes,
is biosynthesized from L-arginine by a family of isoforms
collectively known as nitric oxide synthase (NOS, EC
1.14.13.39).1 The three major enzyme isoforms include
the endothelial cell enzyme (eNOS), which is involved
in the regulation of smooth muscle relaxation and blood
pressure, neuronal nitric oxide synthase (nNOS), im-
portant to brain development and memory, and an
inducible form (iNOS) produced by activated macroph-
age cells during an immune response. The endothelial
and neuronal isoforms are constitutive and calmodulin-
dependent, whereas the macrophage enzyme is induc-
ible and calmodulin-independent because it contains
tightly bound calmodulin. All of the isoforms have a
multicofactor requirement in two binding domains: the
N-terminal domain contains the oxygenase activity and
binds heme and tetrahydrobiopterin (and the substrate)
and the C-terminal domain, which has the reductase
activity, binds the NADPH, FAD, and FMN cofactors.
The calcium-dependent regulatory protein calmodulin
binds between the cofactor domains and may be in-
volved in electron transfer between the domains.2

Excess production of nitric oxide by the NOS isoforms
has been implicated in a variety of diseases,3 such as
stroke, Alzheimer’s disease, and other neurodegenera-
tive diseases,4 septic shock,5 inflammatory arthritis,6
and colitis.7 When this occurs, inhibitors of NOS would
be an important approach to decrease the concentration
of nitric oxide in the cell. However, because of the
importance of nitric oxide to physiological functioning,
it is essential that potent and selective inhibitors of the
isoforms be developed. Many different inhibitors of
NOS are known; some of the earliest inhibitors include
the Nω-substituted-L-arginine analogues.8,9 Recently,
we reported the inactivation of nNOS by Nω-allyl-L-
arginine (1a) and showed thatNω-propyl-L-arginine (1b)
also was a competitive inhibitor and inactivator of
nNOS.10 Here we report the unexpected finding that

the inhibition of nitric oxide synthases by Nω-propyl-L-
arginine is highly selective for nNOS.

Nω-Propyl-L-arginine10 was found to be a competitive
inhibitor11 of all three isoforms. On the basis of the Ki

values with each isoform (Table 1), it is apparent that
there is a considerable degree of selectivity in favor of
nNOS. The potency of inhibition of nNOS (from bovine
brain)10 by Nω-propyl-L-arginine is 3158 times that of
iNOS (mouse murine recombinant)12 and 149-fold that
of eNOS (bovine endothelial recombinant).13 To the best
of our knowledge, this nNOS/iNOS selectivity is one of
the largest, if not the largest, degrees of selectivity
reported; the selectivity of nNOS over eNOS also is
fairly substantial. This is quite unexpected, given that
the selectivity factors forNω-methyl-L-arginine (1c) and
Nω-ethyl-L-arginine (1d) are only about 2;9 interestingly,
Nω-methyl-L-arginine is slightly selective for nNOS and
eNOS over iNOS, whereasNω-ethyl-L-arginine is slightly
selective for iNOS over nNOS and eNOS. Furthermore,
we have found that putting unsaturation into the propyl
side chain has a dramatic, undesirable effect on selec-
tivity. Both Nω-allyl-L-arginine and Nω-propargyl-L-
arginine (1e) are weakly selective, the former having a
selectivity of nNOS/iNOS of about 10 and nNOS/eNOS
of 15, whereas the latter has a selectivity of less than
2. It is apparent that the geometry and size of the side
chain are extremely important to the selectivity of
inhibition.
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Table 1. Comparison of Ki (or IC50) Data for
Nw-Substituted-L-arginine Analogues

Ki (nM) selectivitya

1 (R) nNOSb iNOSc eNOSd nNOS/iNOS nNOS/eNOS

propyl 57 1.8 × 105 8500 3158 149
allyl 200 2100 3100 10.5 15.5
propargyl 430 620 810 1.4 1.9
methyle 10000f 14000f 5900f 1.4 0.6
ethyle 16000f 6100f 9500f 0.4 0.6

a Selectivity for nNOS/iNOS is the ratio of the inverse of the Ki
or IC50 values, since the lower the Ki or IC50, the more potent the
inhibition. b Purified as described in Zhang et al.10 c Purified as
described in Hevel et al.12 d Purified as described in Martasek et
al.13 e Data taken from Moore et al.9 f IC50 values, not Ki values.
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